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Abstract

The statistic_l characteristics of wind-shear turbulence are modelled.

Isotropic turbulence serves as the basis of comparison for the anisotropic

t.urbulence which exists in a wind shear. The question of how turbulence

"scales" in a wind shear is addressed from the perspective of power spectral

density.

N_9- 1 13_.9

U;_claa

G3/47 0106_50

_flese;_rch supported by NASA-L_n_ley Research Center. NAG 1-717.

§Presented _s AIAA Paper" No. 88-0581. _Sth Aerospace :-_riences Meeting, Reno

Neva.dt_, January 1088.

'l'Asso_-iate Prof'essor of Engineering Mechanics: Member. AIAA

'tt[;raduate Research Assistant



Nomenclature

A I r, t):
|j -.,

C (r,t):
I! '_'

second-order anisotropic tensor

two-point time-dependent second-order velocity correlation

tensor

C : decay constant defined in Equ. (12)
k

F I-.-),V ('''): polynomial basis functions for Q(''')
1 2

I (r.t):
IJ "-

M,M:
i 2

p (q,r):
m

O.(q,r, t)

R(r,t):

second-order isotropic tensor

mean-flow wind shear gradients

homogeneous polynomial of order m in the variables, q,r

third-order three-point scalar correlation function

normalized scalar velocity correlation function

S (r,t)
l lm ""

U :
l

I

V:

third-order two-point velocity correlation tensor

total flow velocity

mean-flow velocity

airplane flight speed

a, b: time-dependent parameters characterizing anisotropic

turbulence

ftr, t /g(r,t): longitudinal/transverse correlation functions for isotropic

turbulence

k(r.t : scalar function peculior to third-order velocity moments of

turbulence

|':

separation vector

magnitude of separation vector

II :
I

w(x t

v Z

turbulent Flow velocity

turbulence downwash

Cartesian coordinate variables

A(I. : integral scale for isotropic turbulence



AA( t ) :

A(K,t):

oc:

/_,a:

K :

o-(t ):

Ao"(t) :

@:

_b(K, t}:

¢Cl)(K, tl:

T:

change in integral scale due to anisotropy

energy-scaling factor

airplane glide-slope angle

dimensionless constants

non-dimensionalized wave-number

imaginary element

isotropic turbulence intensity

change in intensity due to anisotropy

angular frequency

dummy variable

power-spectral density

power-spectral density for isotpopic turbulence

anisotropic part of power-spectral density

time-lag
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1. Background

Meteorological events such as thunderstorms and unstable frontal systems have

long been considered dangerous from the perspective of aviation safety.

Investigations into the alarming number of recent low-level aircraft accidents

involving th, mderstorms around airports have revealed one meteorological

culprit----a strong blast of air directed toward the ground which has come to

be known as a "microburst"

]'he mechanism by which the microburst is created is a complex and sometimes

violent one. From the investigation of a particular airliner crash at JFK

airport, much was learned about the convective atmospheric dynamics which

cause the microburst. It was postulated by Fujita I that a violent atmospheric

disturbance may occur when a moist upper air fract drops precipitation through

a reJativeiy dry layer below it. As the precipitation evaporates, the dry

layer cooJs; consequently, a stream of dense cold air suddenly replaces the

ground-heated low-altitude air. Furthermore, as the resulting downdraft

penetrates through the existing horizontal flow, turbulence is invariably

generated. The downdraft eventu_lly impacts the ground and spreads out

radially. During the evolution of a microburst, the dimensions of the

low-altitude phase may be on the order of IB-30 meters high with a radial

spread of 2.5 kilometers. Realization of" its relatively small meteorological

size serves as the motiva.tion for the term "microburst". Wind velocity

in£ormation subsequently obtained from flight recorders has sustained F,tiitn'_

explanation. The typically distinguishing characteristics of the microburst

nre wi ntis which are ioca.l ined and variable. Abrup_ changes in wind speed

and/or direct ion over a short atmospheric distance are referred to in lhe

l]lera!ure as "wind shear", a term coined by Fujita himself. For purposes _,["

!his st,ldy, however, wind shev.r will be defined as a flow which has a



spatially nonconstant mean-velocity profile. Flight through a "wind

shear-infected area" will tax both pilot and aircraft since related velocity

gradients may drop airspeed to critically low levels. In summary, microbursts

and wind shear pose an immediate threat to flight operations at low altitudes

due to their adverse effects on aerodynamic lift/aircraft response.

"the scenario of microburst encounter by an aircraft in the landing mode is

shown in Figure 1. First the aircraft sense an uncharacteristically strong

head wind. Although turbulence typically accompanies the increased airspeed,

pilot confidence is high during this phase of the encounter since aircraft

performance increases with the additional aerodynamic lift. Because the

intent is to land the aircraft, the pilot intuitively trims. Eventually, the

head wind becomes a tail wind, and at this point performance is immediately

and seriously degraded since the distinct head-to-to.it wind swing has reduced

airspeed enough to possibly lose flying speed. In the last ten years, an

estimated 575 people have been killed in commercial _.ircraft accidents in the

United States alone due to the microburst phenomenon. Likewise,

mi_moburst-induced accidents have also been reported in Great Britain,

Germany, France, Italy, Australia, and Japan. Consequently, a fundamental

understanding of microbursts, related wind shear and turbulence, is a

high-priority research issue.

Flight science authorities agree that the "solution" to the wind shear'

"problem" is multi-faceted. The existing research prngr_ms of NASA _nd FAA

t'oc-s primarily on three elements: 1] hazard characterization: 2) sensor

technology; and 3) flight management and operations. Hazard characterization

is the study of" the physics of" the microburst phenomenon. Inherent witl_in

this phase of the research effort is ana]ysis of aircraft aerodynamics in wind
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shears nnd in heavy rain. Wind shear velocity profiles, rainfall effects, and

turbu[ence models are important contributions from this component o[" the

programs. The sensor technology component deals with the prediction and

defect ion of potentially dangerous meteorological events. This component

subdivides into airport-fixed and airborne sensor technologies. Next.

Generation Radar fields (NEXRAD) are presently being investigated by NOAA, FAA

and USAF for future use as airport radars. The other detection device is the

in situ look-ahead sensor. This onboard computer system is being devised to

scan the forward atmospheric environment, evaluate a "hazard index", and

annunciate a warning to the pilot in a time period adequate to ensure either

avoidance or escape of the threat. Look-ahead sensor technology is beyond

state-of-the art, and is not expected to be operational until the mld-IOgO's.

Tl_e third component of microburst research is flight management. Simply put,

t,h_s phase concentrates on informing the pilot on how to safely get the

aircraft out of a microbursf encounter subject to aircraft performance

constraints. An important element of such studies is flight simulation.

Simulators allow pilots to experience threatening wind shears in a controlled

environment, with intent to better prepare them for potential real-life

events. Realistic wind shear representations in flight simulators are

practical _nd economical, and can help crews coordinate their escape efforts

in critical situations. Realism in the simulation of" flight through hazardous

atmospheric environments has improved wit[] the introduction of lateral and

vertical winds, as well as vortex and turbulence influences. The focus of" the

present work is in the hazard char_.cterization _spect of the {_rogra.ms: its

principle r_h ]ect jyes ore fO model the ['I,[id-dyn_nmica [ chorocter] st ics of"

f,tl'bulence associated with low-level _;heared mea11-fiow, and quantify the

effe(:f _)f these characteristics _,n aircraft response. All of [hese issues

will be herein addressed from [he perspective of power spectral density {psd).



g. Introduction

Since microbursts pose a hazardous threat to flight operations only at low

altitudes, the role that the ground plays as a fixed boundary is therefore

important in terms of turbulence modelling. The presence of the ground

generates in the microburst a brand of turbulence which when sensed by the

aircraft during its take-off or landing is both nonstationary and anisotropic.

The objectives of this investigation are thus to model the statistical

characteristics of same, and gain a quantitative understanding, in terms of

scaling effects, of the stochastic nature of the turbulence sensed by an

aircraft during a microbuPSt encounter.

Tile task of mathematically describing the turbulence associated with a typical

microburst (shown in Figure l) is straightforward. The pioneering works of

Taylor _. Karman and Howarth 3 and Robertson 4 have illustrated the well-defined

fashion in which the concepts of two-point velocity correlations can be used

to quantify the kinematical aspects of isotropic turbulence; Batchelor

extended these concepts to the case of axisymmetr'ic turbulence--that which

has a defined form of anisotropy. Axisymmetric turbulence, with its tendency

to pre{'er one spatial direction, is the logical candidate for modelling wind

shoal" turbulence (with its particular anisotropy resulting from the microburst

impacting the ground). Although classical a;<i._:¢mmetric theory produces

f_ r.bulence velocity correlation functions that are posit ion-i ndependent

Ihomogeneous) a.nd time-varying, the turbulence under consideration is assumed

i.nhomo_eneous and in a steady-sto.te ("frozen"l condition; nonetheless, it can

inhomoReneous
be eas ily shown that corre fat ion funct ions f',,r frozen.

I.urbulence moy be converted into time-evolution equations for homogeneous

turbul.ence by duly scaling out a characteristic velocity. Accordingly,



_7 (×.rt .. C (t r) -_ C (r,t) and Stjm('" r) ~ S (t r) _ S mj(r,t) , and the
tJ ..... iJ ' tJ "_ :;'_ lJm '' ""

physics of the inhomogeneous, stea.d,v-stat-e turbulence aligns with the physics

of classical turbulence; the (r,t)-notation rather than the (t,r)-notatiun is

the accepted standard.

Recent work 7, which incorporates axisymmetric theory, has resulted in the

t. wo-point velocity autocorrelation for anisotropic turbulence downwash, viz

2 {a. lr I + b} " l IC (r,t.) = <w(×,t) w(× ÷ r,t)> _ {o_ g} +
33 .... .......

here a ..- Q(o_), where _ is tile airplane glide-slope angle, b is a parameter t.o

be defined later, and g is the transverse correlation function of isotropic

turbulence. Equation (1) is based on the assumption that during take-off or

landing the aircraft senses only/ a small amount of anisotropy in the

(necessarilyl large amount present in the microburst. Note that the velocity

correlation separates into isotropic and anisotropic components, and takes the

fisotropic _ + _anisotropi,:[
general form, C33(r,t)"_ [corretationJ _correlationj' where

=   .nisotro, ic _isotropic _ o- and =
kc°rrelati°nJ g k c°rrelati°nj a, lr l + b.

The contributions of isotropy and anisotropy to the total correlation are

shown in Figure 2.

An important aspect of the ensuing analysis is how turbulence "scales" in a.

m]croburst. A common correlation used for nonstationary processes is the

uniformly modulated, viz. C(r.t) = o-2(tlR(r) where ,r'_tt) is the time-varyinR

mo(|lJl ator: ] mpl i¢:i t in this ,_orrelat ion is the r'<,nsf Faint imposed on the:

R

integral scale--that of time-invariance, in recent studies , however, a m_I'e

general form has been formulated which incorporates time-dependence in b_,th
0

in[enslty and integral scale, viz. C(r,t) = ]]R(_r) _._here _1 = 71(t) = 0"°(t ) and
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d

6 = _(tl = I/Art). Allowing the correlation to evolve in such a manner

peYmits its geometric shape to distort in time, while its r-algebraic Form is

retained. Figure S illustrates the "self-preserving" behavior of such a

correlation function. With C(O. tl - o-2(t ). intensity is clearly >in

ordinate-axis scaling effect while the nol'malized correlation function, R(6r),

automatically incorporates the integral scale/abscissa-axis scaling effect.

Although self-preservation is introduced here strictly from the standpoint of,

"scaling-effects". its hypothetical existence and subsequent analysis can be

be ,)ustified on purely "dynamical system" grounds {see Appendix).

3. Power Spectral Density Analysis

Tile power spectral density is a common way of illustrating energy distribution

versus frequency, and is an immensely popular tool in both gust analyses and

tul'bulence simulations: mathematically, it is the Fourier transform of [.he

autocorrelation function. The psd for the aforementioned downwash formulates

as

_ tt0r/vdF = -c t0r/vq)(o_/V,t) : I <w(x,t)w(x + r,t)"e I {cr2g + alrl + b}e dr,

o

where f = - 1. Since the corpelation function consists of isotropic and

anisot.ropic components, so too will its transform; specifically OlK,t) :

t)(K,t) + (K.L}, where

+'"(,<,t) = o'eA 1+3K2_ and ,/(a,(,<.t) - 4e "_A f_A'[ l-cos(,<b'a^l (:'l

( l+,<,. )a I A] (Kb/aA) 2

Iler'e ¢(l<.t.) is the total psd sensed by the _.ircpaf_ a.s J_ Flies thr,.,u,zh the

micvol)ut'st, r< - o_A/'V >._ non-dimension_tlized wa.ve _ttmtoet', _ I I_e i_,_tw-,_t_i,"

])ltensit.y, A the longitudinal c,?)-relaLic,u length (integral scale), and AA tile

change in inteRral scale due _o r.miso[ropy. The scaling effects disc Issued

e;xr'l]er are evident upon insDect]on of E(lu. (S



The distinct advantage that the psd representation has over its transform

partner, the autocorrelation function, is its more defined statement of the

modelling parameters of anisotropy, viz. AA, a. and b. in relation to total

turbulent energy. For a glide-slope which is maintained during a microburst

encounter, it. follows that a -_constant since a(tl -- O_(_). Hence, b plays the

more important role in terms of modelling the anisotropy due to the boundary
2 , Ao---, change

presence. Since b is related to intensity by 0- + b = (c_ + A_) 2

in intensity due to anisotropy, for neglected higher-order terms b becomes

One way to quantify the collect, ire effects of AA, a, and b on the sensed

turbulence Ls to int, roduce an "energy scaling factor", defined as A(K,t) =

¢Ca)(K,t)/O_l)(K,t). To analyze the effect of AA/A on A(K,t), set b/(aA) =

constant; typical values of n- = 5 ft/s, A = 1000 ft, V = 225 ft/s and a _ O_(c_)

= O(3 °) = 0_(0.052 rad) are chosen, and A0-/0- is a]l<wed to vary up to 0.5 (a

feasible value for wind-shear turbulence severityl. Incorporating Equ. (4]

gives b/(aA) = 0_(0.5). Figure 4 shows that for AA/A = O. I, the energy scaling

factor is as high as 35% for 0 -< K <-- 2 (0 -< O --<0.45 rad/sec)--a frequenc:y

range which fails within that specified for the guidance and control phases of

a.n a]rcr,_Ift mission involving a wind shear. Hence. _ realistic estimate of

the energy transferred to the a.irplane requires thor a.nisotropy be accounted

['or in turbulence models and related flight simulations both.

4. Cons[taints Imposed by Nav_.er-Stokes

Knowledge of the sheared meo.n -wind,/ttmbulence

}%overning equation of the f].uid be considered.

n turbulent.

]nt,)rpln. y r_equire_ that I11_

The Havier-Stokes equ_tion for

high Reynolds number, steady-state fluid with both body _.nd

i0



pressure forces neglected is

O(U Id )
m

O.

0 :<
I11

Wilh 1! = Fj + u , the two-point correlation method 9 yields

aU aO '
i @ I

'? +---C - g S + _C =0
(}_- eli cqX mJ _ lmJ lm

m m OX '
I11

(6)

where C ,v C (r, tl = <,_1 u '> and S ,_ S {r,t I = <u u u '>; index
t I -l] "_ i J tm] lmJ "_ I m I

contraction results in
/

0 + --C * C - 2 " S = O. (7)
--_Y Cll 0:< _l ' _i &" _,.l

m _ X m
in

Equation (7) requires tile solution of separate isotropic and anisotropic

dynamical problems, viz.

0 T - 2 a (8)
at, _i --_7-r S = 0" imi

m

nnd

3
A

3t ii

"7, I0
where I + A = C .

lj lJ lJ

/

t i (9)
+ _ C + -----7 C = t.} ,

OK mi ml

m cqx
m

The basis for a scaling comparison (the isotropic

case) wi]l be considered first.

Int, r¢_ducing the f and g functional representations for the correlation t, ensors

g, ives a result whose first integral is the Karman-Howarth equation f_r high

9

l_eynolds number" isotropic turbulence , viz.

I ;_k ],]_ Io- f) - c_ -r Or

(1()1

where k = l',(F,t) is t.he sc_qlvr function required to st:_ecif2 third-order"

velocity product moments. Since.' turbulence self-interaction is not altered by

self-preservation, it follows that kit, t) also has such an evolution with

lime, i.e. t,,(r',l) = k(_r) = k(r/A). Incorporation of this feature int.o the
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r-integration of the K_rman-Howarth equation results in

d {_(tlA(t)_ = c_aC ,
dt k

(Ii)

where

m{ ; k(O)C = .f 4k 0 ) + O0
k 0

---} dO = negative scale-independent constant,

(12)

, will be determined lafer.
and 0 : r/A: a specific numerical value of Ck

Solution of Equ. (11) gives the time-dependence,

for the integral scale.

C

A[t.] - k f _a(t)dt, t 13)
_e(t)

The power-law form for lsotropic intensity, _2(t) _

t" n = ±1 +2, converts Equ. (1.3) into

A(t

2C
k t(,÷2)/2 N = +1, _+g, ... ; (14)

3n +

J/'2

for n = -/, A(t) -- O_tt ).

To consider the anisotropic part of the problem, viz. Equ. (9), gradients must

first be defined. The two wind-shear profiles chosen for analysis are

illustrated in Figures 5 and 6. and will hereinafter be referred t.o ms "Shear

Flow t" and "Shear Flow II" respectivelv. Note that both profiles have a

"head-to-tail wind swing", a phenomenon frequently observed in microburst

encounters. The mean velocity for Shear-Flow I is lI = {IJlz) 0 O} - {M z,O,()}) ' ' 1

are shown in Figure 5; M is negative on the headwjnd side of the microbursl
1

and positive on the tailwind side. Analysis of Shear" Flow II is r'estri,:led t_,

the two-dimensional case with i] = {U(.,:),O,W(z}} and gradients o{" )he form
t

,tll dW - M
dx dE

Equ. (91 yields

> O. Incorporation of Shear-Fl,,w I characte)'islics int()

,7 (alr-l+b) - M _ _r _ + M mr_ - _' 0 : 115)
Ot _ Or t ,:!)"
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integration in r from 0 to m produces

dt

where # (air I + b) dr m ¢_AA(L).

0

{_(t)AAIt)} - H _(tJ_A(t) = 0 ,
I

The solution to Equ. (16) is

M ft.

AA(t) - ' J" o_(t)A(t)dt.

2(

For 0-o(t) ._ t n and the integral scale of Equ. (14), Equ. (17) becomes

4HCf.

l k t (n'4)/2

AA(t) .... [3n + 2)(3n + 4)
n= -+1, -+2 .... ;

to)

17)

18)

specifically, AA/t) - O_(t 3/2) for 0"2(t,) - t -t A similar analysis for

Shear-Flow II wields

4M (7
k ( n+4 )/2

aA(t) .... (Un + "2)(3n + 4) t
n = +_1, -+2, ...

Like Shear Flow [, Shear Flow [I has AA(t) _. O(t 3/z) for 0"2(t.) _ t -1.

5. Determination o£ C
k

The theory of turbulence strictly prohibits the presence in the analysis of

any ad!ustable constants; therefore a full cl.osure of the dynamicaI equation

is not achieved until a value for C is determined. The fact that C is
k k

for'reed from _n integral of k(-'') (cf. Equ. (12)) explicitly suggests that

1 t

aside from some fundamental limiting constraints, viz. r---_ _o {k(--'}} ,, O_(r) :J

and _" _ TM {k( )} 0 the exact functional form r,f k{ "''j )s not critical

i.e. k(-'') itself is not necessarily a unique function. All that is required

I',,r any and all possible k(''" ) say k(''') _ k i--" ) N = I 2.3 ..... is
' N ' '

-1

that {4 [ r k (r,t)dr} = _' be independent of" N A preliminary st.el_ i._
N 1,,:

lh_ref',-u'e fo develop a represenf_.tive algebraic f(,,rm t'or k(r.t.I k(rA).

'1"_ ac_;omplish this while sim,,ltaneously saying as little as possible ;_b(,,Jt

k(--') itself, it is here proposod to kinematically describe the three-point
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correlation, <u(x.t)u(x + q,t)u(x + r,t)> = Q(q,r.t), where u(x,t) is ,;nly one

component of the three-component turbulence velocity field and x is n

one-dimensional position vector, i.e. Y, = (x,O.O), etc. Note that for

self-preservation, this correlation accordingly scales as ()Iq,r,! } =

Cs(t)s(q/A,r/A). where s(O,r/A) =- k(r/A): furthermore, the functional form of

0(.--I is such that it must satisfy certain symmetry properf, ies, viz. Q(¢t,r,t)

= O.(r,q, tl = QI-q,r-q,t) ll Since Q('") expanded in a Taylor's series about

q = r = 0 produces

2 r 2
+ a q + b r + a q + c2qr + b + ....Q[q,r,t) = a ° _. I _ a

it follows from the required symmetry that the time-dependent parameters, a m,

b , and c , m = O. 1,2,..., cannot be completely arbitrary. In fact they must
m m

12

each be such that eventually Q(''" ) expresses as

oo

Q(q,r.t) = E A (t)P (q,r)
Ill Ill

m=O

where each P (''') is a homogeneous polynomial in q. r and individually must.
m

themselves satisfy the same symmetry as Q(q,r, tt i.e. P (q,r) = P (r,q) =.- ' Ill m

P (-q,r-q), m = 0,1,2,... • Fortunately, there are only two (2) fundamental
m

2 2 3 3qar _ 3qr 2 + 2r °,
such forms, viz. Fl(q,r) = q - qr * r and Fz(q,r) = 2q -

since any other higher-order such form can be represented as a combination of"

V !---I and/or V ('''): there is no .linear homogeneous algebraic form in q,r
1 2

which sat. isf'ies the required symmetry. For e>:ample, the ['ourth-orde)"

polynomial is identical to {V Iq,rl} 2, while the fifth-order one is identical
, 1

_ {V Iq,rlF [q,r)}. The existence of such a complele set of polynomin] basis

[',mcl. i_.,ns For" _ sequence ,_f systematically _ner-ated algebraic" ['_H'ms was

,_1.]ginaily established in a tl_eot'em formulated by l_a.vid Hilberl ill 18q( )1S

The theorem need not be qLioted here. but the essence of i t is thai iJ" an

infinite sequence of al£ebr'aic .forms (the s_.taen'ce here is P (q.r') = 1,

3qCr 3qr ;_ 2r :_-£ c 2qS e ! c ]
F' [q,r') = O. P (q,r) = q - qr + r" , P tq,r] = - - + • -"

I 3 3

14



is constructed according to some general rule (the "rule" here is the required

q,r-symmetry), there comes a point in the construction where the set of all

availa.ble independent such forms is exhausted and any form constructed

thereinafter contains absolutely no new information ._ being merely a

modification/repetition of what has already preceded. What this means for the

case at hand is that the most general sixth-order form must be a linear

combination of the products. F 3(q,r) and F 2(q,r), while a seventh-order such
1 2

Form is {F 2( . .i .q,r)F (q,r)} A simple appropriate algebraic expression f%r
o

Q(q r t) which for q --- 0 fits data reported by Stewart 14 ".... is thus

Q(q,r',t) _- o-a

where A = /_A-3 ( t ), B = _rA-2( t

AF (q,r)
2

t)

{1 + _F (q,r)} '_
1

, and [3, _ -- dimensionless constants;

accordingl y,

k(r t) ,_ k(r/A) =

3
2_(F/AI

{1 + _(r/A)Z} 2

The specific B and _ for the data sets highlighted by Stewart (loc. ciL. ) are:

Curve 1 (cf. Figure 7);

Curve 2 (cf. Figure 8):

Curve 3 (cf. Figure 9);

The value o£ C
k

-0.08rr.

/_ = -0.74, _- = 7;

13 = -1.5 , g = 12:

f3 = -3.71 ,7 = 22:

which most closely approximates all three cases is (7
k

6. Conclusions and Concluding Remarks

._;i n(:e J ntegral scale provides a measure of f ,_,r'bu l ence

I'ealistic estimates of _his scale are essential t,, ensure

simulation fidelity. The r,_,le r, layeJ by anisotropy in a. wind shear encounter

Js quantified in the correlafion length, L = A(t) + AA(tt. As an air'cr'af'l

penetrates |,he headwind portion of Shear Flow I, AA _ 0 since N and c_ are
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negative in this phase of flight. The turbulence sensed there by the aircraft

is therefore less r_ndom than that predicted by isotropic theory. ['he

tailwind phase of such an encounter provides AA < O--a more random turbulence

in comparison with isotropy. A similar analysis of Shear-Flow Jl yiel,ls

negative AA on both sides of" the microburst, thus making the attendant

turbulence more random than the isotropic case in all phases of the encounter.

The significance of anisotropy in microburst turbulence models has herein been

considered from the perspective of power spectral density. The energy scaling

factor clearly defines the inadequacy of using isotropic theory oniy to

estimate the turbulent energy in a wind shear. The psd representation of the

turbulent downwash is a step towards enhanced simulation of low-level

turbulence, with the relative importance of the characteristics considered

above becoming clear only upon eventuai flight-simulator implementation.
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Appendix: The Case for Self-Preservation

Nonstat ionary behavior whose time-evolution can be effected by two

time-dependent scaling effects is important not only because of its relatively

simple features, but also because of its immediate practical application. For

nonstationary processes the two-time correlation function. Q t .t ) =
' l 2

<w(t )wit. )>, can be considered as a two degree-of-freedom system in which I

= (I + t }/2 and z = t - _ play the role of uncoupled principal
l 2 2 1

coordinates: indeed in the (t. _)-coordinate reference frame the two

degree-of-freedom system at hand is instead duly converted into one whose

physical characteristics accordingly vary with time. i.e. Q(t t ) -_ Q(t,T) -_
• ' 1' 2

C(t.r/V) _ C(t,r], where V -_ fT. And even though time-varying systems can be

regarded as filters which "select" eigenfunctions in the pure sense rather

than just simple sinusoids, the natural tendency in their analysis is to treat

them as systems whose properties do not change "appreciably" with repect to

time. ]'he underlying motivation for this approach is that classical modal

analysis is not explicitly restricted to systems which are time-invariant

only; it is only necessary that the differential equal ion governing the

system, as well as the boundary conditions, be separable into a function of

time alone and in this case a function of non-dimensionalized length alone,

i.e. lhat. temporal changes in the system be in some sense "unifform". 'Fhe

suggested separation for dynamical systems is thus the essence of"

sel F-preservat ion for nonstat ionary behavior in random processes. The

m_d_hematics of same proceeds as follows. Consider the most general case o['

time-wnrying intensity and integral scale, viz. ('_( [ , T I:(_1 t--[/'2 )0"{ [-'r//2)[_( [., I _ ,

T : r/V. if" o-t---) is expanded in Taylor's series _bL, ut r : (1. the resull f'<,T'

I;{t,T) i_

2 2
C(t,T) _ C (t }{I - T /4T_IR.(t. T)
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where only |inea.r terms in T have been retained for @(t -+ _/2), and 'F =

cr(t)[,tz ] is the time-dependent scale over which a-(t) may be assumed t.o vary
z:o

linearly with T, viz.

¢[t +- T/2_ = _(_){1 + T/ZT}

Since R(''') scales with A(t), i.e. R(t,z) ~ t!IT/A)*, and ¢('''} scales with

1", the modified expression,

C(t,T) -- 0"2(t){1 - (T/2A)2(A/T)2} R(''') ,

allows for a.nalysis of the coupling between the two scales, T and A. N,_te

that as far as R(''') is concerned, R(''') -_ 0 for r. 2 A. so that the major

contribution to C[t,T) from R(''') itself is from values of T < A. Therefore,

if T _ A, it follows that C(t. TI -- cr2[t)R('''), i.e. the z-dependence of

C(t,r) is determined by R(''-) only and is unaffected by the z-dependence of

{o-(t. - z/2)cr(t + r/2)}.

t'A- A(t) in this expression considered _s a "time-length" scale.
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Figure 1:

F_gure 2:

Figure 3 :

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Figure Captions

Schematic of a typical microburst encounter by an aircraft

attempting to land.

Contributions of isotropy
and anisotropy to the downwash

correlation.

Time-evolution of a self-similar or self-preserving correlation

function; note the explicit two scaling-effects feature.

Energy scaling factor quantifying the effects of aniso_ropy, i.e.

AA,/A.

Sheared microburst mean wind consistent with "no-slip" condition.

Sheared microburst mean wind for continuously varying

headwind/tailwind.

Triple-velocity curve, k('''), obtained by Stewart; broken line is

theoretical curve.

Triple-velocity curve, k('''), obtained by Stewart; broken line is

theoretical curve.

Triple-velocity curve, k('''), obtained by Stewart; broken line is

theoretical curve.
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